The Mathematics of Downscaling

Hans von Storch and Eduardo Zorita (Institute for Hydrophysics. GKSS Research Centre.
21502 Geesthacht. Germany)

The basic idea of downscaling is to build dynamical, semi-empirical or purely empirical
models which relate large-scale features of the state of the atmosphere or the ocean to
local features of interest such as amounts of daily rainfall, storm-related sea level extremes
or the blooming of snowdrops. The basic idea is illustrated. the large variety of different
implementations is reviewed and the common mathematical structure and the underlyving

assumptions are discussed.
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General Concept

von Storch, Zorita and Cubasch, 1993, J. of Climate
Hewitson and Crane, 1992, Geophys. Res. Lett.
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Example: Flowering of snowdrops in
Northern Germany

e see Maak and von Storch, 1996 (Int. J. Biometeor.)

¢ R is the spatial distribution of the dates of the first
flowering of snowdrops in Schleswig Holstein

e L is the European scale monthly mean temperature
in January, February and March before and while the

snowdrops begin to flower.

e Regression link established via a Canonical Corre-
lation Analysis.

e Fit of regression model with 1971-90 observations.
confirmation of model with independent data 1895-
1900 and 1950-70. Reconstruction of flowering dates from

1870 onwards.

e Scenario for time of doubled carbon dioxide con-
centration. GCM 2 CO,” time slice experiment — snow-
drops may flower two weeks earlier than presently.



e diagram: patterns
e diagram: reconstuction and verification

e diagram: present and “predicted” distribution of dates
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Downscaling ...

e ...1s related to

— synoptic climatology, and

— the concept of parameterization of sub-grid scale processes

e ...can be done with dynamical models, empirical
models and mixed models. The level of technical com-
plexity varies, but the basic concept is the same.

e ...Mmay be seen as

— an interpolation problem, or

— a conditional probabilistic problem



The Interpolation Ansatz

The local variable R is completely determined by the large scale L, i.e.,
the existence of a deterministic function F with

R =F(L) (1)

is postulated.

Then, the topography of F needs to be derived from a limited number of
observations (lx,r;). These observations may be exact or subject to un-
certainties stemming from instrumental errors, analysis errors and other

sources.

A climate change scenario r* is derived by specifying an expected or hypo-
thetical large-scale state I* which is plugged into (1)

r* = F(I") | (2)

Working Assumption:

The topography F on the L-phase space is unchanged in the course of time
(thus insensitive to different radiative regime). However, the system visits
different parts of the L-phase space.



The interpolation of the multi-dimensional F-topography may be pursued
by various techniques, such as

e kriging and other geostatistical techniques,

o neural networks and other self-learning algorithms (e.g. McGinnis
(1996), Hewitson (1996)),

e splines and piecewise constant functions determined by the nearest
neighbor (“analogue”) (e.g. Zorita et al. (1995), Cubasch et al.

(1996)).
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The Probabilistic Ansatz

The local variable R is incompletely specified by the large scale L. The
variability of R, as given by its density function fg(r), is caused by random
processes, which are to some extent controlled by the large-scale state,
which in turn is described by a density f7(I). Specifically, it is assumed that
the probability density of R may be factored such as (Katz and Parlange,

1996):

fa(r) = [ frp=(r) fr(l)dl (3)
fr(r) = ;me:z(T)PT’Ob(L:l) (4)

if the large-scale state is described by the continuous or a discrete index L.

Then, the conditional probability densities frr—; need to be determined
with the help of a dynamical or statistical analysis.

A climate change scenario may then be constituted by determining a mod-
ified distribution fr () and by drawing one or several random samples from

the random variable given by (3) or (4).

Working Assumption:
The conditional densities frjr—; are the same under different climatic con-

ditions.



Example: Sea Ice on the Western
Baltic

The (estimated) probability distribution (in %) of (strength of west-
erly flow, severity of Baltic Sea ice conditions).

A: Distribution obtained from 104 years of data. From Koslowski
and Loewe (1992).

B: Future distribution, if the marginal distribution of the west-
erly flow would change as indicated in the last row and if no other

factors would control the ice conditions.

severity of the | strength of the westerlies
sea ice conditions | strong normal  weak | all
A: present distribution
weak | 21 11 2 34
moderate | 20 14 7 41
severe 4 4 6 14
Very severe 0 3 8 11
all | 45 32 23 100
B: hvpothetical future distribution
weak | 31 8 0 39
moderate | 30 10 4 44
severe | 6 3 3 12
very severe | 0 2 4 6
all | 67 23 11 101




The western Baltic Sea ice example is illustrative

but invalid

since it violates the working assumption that only the atmospheric
circulation systematically affects the distribution of the severity
of ice conditions. In this case, the systematic rise of temperature
certainly is the major agent for systematical changes of sea ice

statistics.



Dynamical Downscaling

In dynamical downscaling (e.g. Giorgi, 1990; Machenhauer et al., 1996),
a regional climate model is integrated for an extended time with observed
or simulated large-scale time-dependent boundary conditions.

This exercise may be understood as exposing the random variable “regional
GCM?” to a trajectory ﬁ(t) in the L-phase space. The system responds with
a trajectory R(¢) = G(L(t),t) in the R-phase space. From this sample

trajectory an estimate of the changed climate may be derived.



Grofiwetterlagen Approach:
Deterministic Design

The L-phase space is subdivided into a finite number of areas “Groffwetter-
lagen” Ly, and for each of these a standard local weather R}, is specified:

Ry =E(R[L € Ly) = [rfpcp, (r)dr (5)

A scenario is then obtained as a weighted mean:

rt = Xk: Ry Prob(Ly) (6)

The standard local weather may be determined by dynamical mesoscale
models (Frey Buness et al., 1995; Fuentes and Heimann, 1996), or by
empirical approaches (Bardossy and Plate, 1992; Conway et al., 1996; Enke

and Spekat, 1996).

This approach is rooted in synpotic climatology. In the tradition of this

approach, it usually relates instantaneous R- and L-states to each other.



Grofiwetterlagen Approach:
Randomized Design

A conceptually different, but formally similar approach is to de-
termine the set of all local weather states Ry observed during
GrofSwetterlage Ly:

r(t) € Ry if 1(t) € Ly (7)

A consistent local state r* for a given large-scale state 1(¢) is ob-
tained by a two-step approach: first, L, with 1(t) € Ly, is identi-
fied; then r* is randomly drawn from Ry.

This approach was pioneered by Hughes et al. (1993), who op-
timized the division into Grofwetterlagen by means of a CART

algorithm.

A somewhat extreme approach was pursued by Zorita et al. (1995)
who formed L sets which contained only one observation (“ana-
logue approach”).

This approach is not limited to instantaneous large-scale local links
in the tradition of synoptic climatology. Indeed, monthly mean
spatial distributions have been used as L to specify a vector of
intramonthly percentiles of precipitation (Cubasch et al., 1996).
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Regression Approach

R = F(L) + noise (8)

with some linear or nonlinear function F and a zero-mean noise
term whose variance and time-memory may depend on L or not.
When the noise term is disregarded, we are back to the interpola-
tion problem; indeed the function F may be determined by any of
the techniques mentioned there.

In most application (von Storch et al., 1993; Hewitson and Crane,
1992; Burger, 1996; Kaas et al., 1996; Dehn et al., 1996), the func-
tion F was chosen to be linear. The system (8) is fitted to data in
a low-dimensional subspace of L, often accomplished by a combi-
nation of the EOF and CCA techniques.

When reproducing past data, the regression model is used without
noise term; then the variance of the estimated local variable is too
small since the unexplained variability is taken away:.

When a scenario of future trajectories R(¢) is needed then such
an underestimation may be disadvantegous; then, the unexplained
part should be modelled with an adequate stochastic process (say
cyclostationary AR(1)) and the full model, with noise, should be

rurmn.

Often, the expression “downscaling” is limited to the empirically
determined regression model (8). This limitation is inadequate.



Conclusion

Downscaling may be seen as an

e interpolation problem, or

¢ a conditional probability problem.

To some extent, downscaling is a late spin-off of synoptic
climatology, but with major differences

* The goal is not to specify accurately individual numbers, as is
required in weather predition. Instead, conditional statistics of

variables of interest are generated.

e Downcaling is not limited to instantaneous dynamically direct
links such as upper air flow and local response. Instead indirect
links, for instance between monthly mean air pressure fields and a

vector of intramonthly pecentiles of storm-related water levels at a

tide gauge, may be usd as well.

¢ The ,preditor“ must be well simulated by GCMs.



Downscaling may be used for

e the generation of Icoal climate change scenarios by
postprocesing GCM output,

e the reconstruction of past local climate variations (as far
as large-scale ,,specifying“ states are available), and

o for the verification of a GCM in simulating a local climate.

GCMs which simulate the local climate right, i.e., which
have correctly incorporated the dynamical ,large-scale -
local link“ may be used to test the skill of statistical

downscaling procedures in simulating climate change.
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